Installation:

1. Select the desired mounting location of the instrument. Cut an opening to accommodate the $33 / 8^{\prime \prime}$ housing if required (hole will need to be approximately $37 / 16^{\prime \prime}$), making sure there is enough clearance behind the panel for the wires.
2. Mount the gauge and secure with the supplied clamp and nuts.
. Depending on your mounting configuration, it might be necessary to program the gauge before installation.

Electrical Connection

1. Route wires from the instrument to
(a) Battery (+) switched power after the fuse box or user supplied in line fuse (5amp, fast blow) to terminal " + "
(b) Light switch after the fuse box, or user supplied in line fuse (1 amp) and switch to light bulbs
(c) Ground location not shared with other electronics (such as battery negative terminal or direct to chassis) to terminal "-".
(d) Route the signal wire from the gauge (S) to the signal wire source location. This will be where the tachometer receives its signal from. (note: when using a magnetic flywheel sender, the sender is nonpolarized so it does not matter which wire is connected to the tachometer S terminal and which is connected to ground)

Parts List

efore installation. Do not deviate from instalation. Do not deviat Always disconnect battery grand before making any electrical connections.

Tachometer

Instruction Sheet 2910002550900 Rev 11-2020

Tech Support 1-800-265-1818 http://usa.vdo.com

Tachometer

Instruction Sheet 2910002550900
Rev 11-2020

Programming the Tachometer

For tachometers being used on diesel engines with a low frequency signal (ie: signal source is the W terminal the alternator or a camshaft driven signal generator), remove the according to the below chart:

					ipsw	vitch			
	Pulses	D8	D7	D6	D5	D4	D3	D2	D1
	1	0	0	0	0	0	0	0	1
	2	0	0	0	0	0	0	1	0
	3	0	0	0	0	0	0	1	1
Factory default	4	0	0	0	0	0	1	0	0
	5	0	0	0	0	0	1	0	1
	6	0	0	0	0	0	1	1	0
	7	0	0	0	0	0	1	1	1
	8	0	0	0	0	1	0	0	0
	9	0	0	0	0	1	0	0	1
	10	0	0	0	0	1	0	1	0
	11	0	0	0	0	1	0	1	1
	12	0	0	0	0	1	1	0	0
	13	0	0	0	0	1	1	0	1
	14	0	0	0	0	1	1	1	0
	15	0	0	0	0	1	1	1	1
	16	0							

For tachometers that are being used on diesel engines with high frequency signal (ie: signal source is a flywheel sender) cover on the back of the gauge to set the dip switches.

To determine the dip switch combination, take the number of pulses (same as the number of teeth on the flywheel) and subtract 50

Ex: for a flywheel with 104 teeth/pulses:

$$
104-50=54
$$

Then use the below chart to determine the combination of dipswitches that equals 54 :

\section*{| | Dipswitch | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| Pulses Value | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |}

Note: a " 0 " denotes the dipswitch is off, and a " 1 " denotes the switch is on.

In the example, the dipswitches would be set as below to add up to the value of 54:

	Dipswitch								
	D8	D7	D6	D5	D4	D3	D2	D1	1
54	0	0	1	1	0	1	1		0

The Fine Adjustment screw can then be used to make small adjustments to fine tune the pointer, if required after setting the dip switches.

Magnetic pickup in transmission bell housing

